Stmontag.ru

СТ Монтаж
11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сварка арматуры внахлест ГОСТ

Нахлест арматуры при вязке – нормы соединения по СНиП

Армирование – ответственная часть устройства всех монолитных конструкций, от которого зависит долговечного и надежного будущего строения. Процесс заключается в создании каркаса из металлических стержней. Он размещается в опалубку и заливается бетоном. Чтобы создать этот каркас, прибегают к вязке или сварочным работам. При этом большую роль при вязке играет правильно рассчитанный нахлест для арматуры. Если он недостаточный, то соединение окажется недостаточно прочным, а это сказывается на эксплуатационных характеристиках. Поэтому важно разобраться, какой именно делать нахлест при вязке.

Сварка арматуры для фундамента

Реализация подобных работ при обустройстве несущих конструкций, имеет некоторые особенности:

  • металл нагревается до температуры, вызывающей его плавление, что обуславливает частичную потерю таких свойств, жесткость и прочность;
  • чтобы нивелировать потери прочности, сваренный каркас должен быть более плотным;
  • работы со сварочным аппаратом для создания армирующих конструкций для фундамента целесообразно проводить в том случае, если это позволяет характеристики грунта (отсутствие проседания и изменения структуры);
  • заварив очередной стык, необходимо дать ему остыть и проверить металл на появление микротрещин;
  • в местах стыковки проводится обработка шлифовальным инструментом, что обеспечить высокую прочность прилегания.

Типы сварных соединений

Выполняемые ручной дуговой сваркой, различные типы сварных соединений из сталей и сплавов требуют предварительной подготовки сопрягаемых кромок путем придания им определенной формы и тщательной зачистки свариваемых поверхностей.

Различают такие типы сварных соединений

:
стыковое
,
угловое
,
тавровое
и
нахлесточное
. Каждое из изделий, подвергаемых сварке, должно иметь определенную форму поперечного сечения подготовленных кромок, выполненных с отбортовкой или без нее, со скосом или без скоса. Кроме того, каждому из них соответствует определенный характер сварного шва. Сварные швы делят на
односторонние
и
двухсторонние
. Каждому типу сварных соединений соответствует его условное обозначение, состоящее из первой заглавной буквы названия соединения и определенного числа, например: С1, У2 и т. д.

Стыковое сварное соединение

состоит из расположенных в одной плоскости двух, сваренных кромками, элементов конструкции. Сварку, как правило, выполняют
непрерывнымиодносторонними
или
двухсторонними сварнымишвами
. Основные типы стыковых швов включают такие виды: с отбортовкой и без отбортовки кромок; без скоса и с одним или двумя симметричными скосами; с V-образным, Х-образным и криволинейным скосом.
Условное обозначение стыкового соединения
имеет такой вид: С1, С2, …, С45.

Угловое сварное соединение

представляет собой конструкцию, в которой выполнена сварка кромок деталей, расположенных под определенным углом друг к другу. Подлежащие сварке кромки в них могут быть выполнены: без скоса; со скосом; со скосом одной кромки и с двумя симметричными скосами одной кромки.
Условноеобозначение углового соединения
записывают в таком виде: У1, У2,…, У10.

Тавровое сварное соединение

– вид соединения, в котором элементы сварной конструкции находятся под определенным углом друг к другу таким образом, чтобы кромка одного из них примыкала к боковой поверхности другого. Односторонние и двухсторонние швы при сварочных работах выполняют у изделий: с кромками, выполненными без скоса; с прямолинейным или криволинейным скосом одной кромки; с двумя симметричными и с двумя симметричными криволинейными скосами одной кромки.
Условное обозначение таврового соединения
имеет вид: Т1, Т2,…, Т9.

Нахлесточное сварное соединение

– соединение, в котором оба элемента конструкции частично перекрывают друг друга. Торцы каждого из элементов приварены к боковой поверхности примыкающего элемента. Сварку производят односторонними или двухсторонними швами без скоса кромок.
Условное обозначение нахлесточного соединения
: Н1, Н2.

Читать еще:  Самодельный крючок для вязки арматуры

Товары каталога:

Дюбель-гвоздь металлический для монтажного пистолета с шайбой
Винт с внутренним шестигранником DIN 912, ГОСТ 11738
Болт закладной ж/д ГОСТ 16017-79
Костыль ж/д ГОСТ 5812-82
Анкер-шпилька
Твитнуть

comments powered by Disqus



Соединение внахлест вязанием

Дешевый и распространенный класс арматуры для соединений без сварки – А400 АIII. Стыки скрепляются вязальной проволокой, к местам вязки предъявляются особые требования.

Анкеровка или нахлест арматуры при вязке таблица значений которого приведена ниже для вязки в бетоне марки BIO с прочностью 560 кг/см 2 , предполагает использование определенных марок и классов армостержней с определенным типом металлообработки для определенных диаметров:

Работа арматуры при сжатии и растяжении

Механическая стыковка прутьев в каркасе для ж/б изделий проводится один из следующих способов:

  1. Наложением прямых стержней друг на друга;
  2. Нахлест прута с прямым концом со сваркой или механическим креплением на всем перепуске поперечных стержней;
  3. Механическое и сварное крепление стержней с загнутыми в виде крючков, петель и лап законцовками.

Применение гладкой арматуры требует вязать ее внахлест или сваривать с поперечными прутьями каркаса.

Требования к вязке прутьев внахлест:

  1. Необходимо вязать стержни с соблюдением длины наложения прутьев;
  2. Соблюдать нахождение мест вязки в бетоне и перепусков арматуры по отношению друг к другу;

Соблюдение требований СНиП позволит эксплуатировать прочные ж/ плиты в фундаментах с большим и гарантированным сроком службы. Способы ручной вязки арматуры

Работать со сваркой позволительно только настоящим профессионалам. Именно они могут качественно наложить сварочные швы, и вся конструкция при этом будет крепкой и не сломается под массой бетонного раствора.

К сварочным работам предъявляются требования:

  • Многослойный шов выполняется при помощи одиночного электрода. Шов накладывается поэтапно: сначала с одной стороны, потом необходимо проложить шов с другой стороны.
  • Принудительный шов предполагает использование арматуры диаметром от 1,4 см до 40 см. Делаются крестовые соединения. Изделия собираются в кондукторах, так как там прутья лучше примыкают друг к другу.
  • Сорта стали с низким или средним содержанием углерода не подходят для точечной сварки. Это объясняется тем, что при сварке точечно в пересекающихся точках стержней быстро отводится тепло, вследствие этого остывший металл становится хрупким.

Соединение вязкой

По нормам СНиП состыкование прутьев в местах особенно сильной нагрузки способом вязки не допустимо. Стыки лучше делать там, где нагрузка от бетонного раствора, а также в дальнейшем от стен будет минимальна

Кроме этого, перепуски делают там, где не предполагается изгибов (поворотов). Если эти условия вязки не могут быть выполнены, то перепуск делается максимально длинным, до 90 диаметров стыкуемых прутов. Например: диаметр прута равен 36 мм, значит 90*36мм=3240мм, или 324 см, или 3,24 м.

Длина нахлеста

Величина нахлеста зависит от следующих показателей:

  1. Диаметра используемых арматурных стержней. Есть специальные сводные таблицы, в которых указаны, какие длиной нахлесты применяются для того или иного диаметра прута. В общем, стоить отметить, что диаметр должен быть увеличен примерно в 30 раз. Например, диаметр прута равен 10 мм, перепуск должен быть равен 30 диаметрам. Получается, что величина нахлеста равна 300 мм или 30 см.
  2. Используемой марки бетона. Чем выше марка бетона, тем меньший нахлест будет нужен, даже несмотря на диаметр прутьев. Но это также зависит от того, для какого бетона будет использоваться конструкция, для сжатого или растянутого. Для последнего нахлест нужен чуть больше.
  3. Класса стали, из которой выполнены стрежни.
  4. Точек состыкования.
Читать еще:  Приспособление для гнутья арматуры своими руками

Сварка или вязка?

Использование сварочного аппарата – это более мобильный и не такой трудоёмкий процесс, как вязка. Однако, технология способствует ухудшению прочностных характеристик основы.

Недостатки методики раскрываются следующим образом:

  • структурные изменения стали обуславливают потери прочности;
  • соединение узлов каркаса требует высокой квалификации работника;
  • сваренные элементы могут подвергаться коррозии;
  • при работе могут формироваться подрезы стыков, что уменьшает площадь сечения;
  • при сварке увеличивается жесткость конструкции, если бетон уплотняется вибраторами, её целостность может быть нарушена.

Углы арматурного каркаса должны усиливаться вертикальными и поперечными элементами, которые формируются в виде Г-образных и П-образных соединений

Реализация такой методики целесообразна при значительных объемах работ. В частном домостроении практичнее использовать технику вязки.

Черт.4

Черт.4
5. Допускается смещение свариваемых кромок перед сваркой относительно друг друга, не более: 0,5 мм — для деталей толщиной до 4 мм; 1,0 мм — для деталей толщиной 4-10 мм; 0,1 , но не более 3 мм — для деталей толщиной 10-100 мм; 0,01+2 мм, но не более 4 мм — для деталей толщиной более 100 мм.

6. В стыковых, тавровых и угловых соединениях толщиной более 16 мм, выполняемых в монтажных условиях, допускается увеличение номинального значения размера до 4 мм. При этом соответственно может быть увеличена ширина шва , . (Измененная редакция, Изм. N 1).

7. При сварке в положениях, отличных от нижнего, допускается увеличение размера и не более: 1,0 мм — для деталей толщиной до 60 мм; 2,0 мм — для деталей толщиной свыше 60 мм.

8. При выполнении двустороннего шва с полным проплавлением перед сваркой с обратной стороны корень шва должен быть расчищен до чистого металла. Для несимметричных соединений с двусторонним швом в случае строжки корня первого шва допускается увеличение размеров подварочного шва до размеров первого шва.

9. Размер и предельные отклонения катета углового шва , должны быть установлены при проектировании. При этом размер катета должен быть не более 3 мм для деталей толщиной до 3 мм включительно и 1,2 толщины более тонкой детали при сварке деталей толщиной свыше 3 мм. Предельные отклонения размера катета угловых швов от номинального значения приведены в приложении 3. 8, 9. (Измененная редакция, Изм. N 1).

10. (Исключен, Изм. N 1).

11. Минимальные значения катетов угловых швов приведены в приложении 1.

12. При применении электродов с более высоким временным сопротивлением разрыву, чем у основного металла, катет углового шва в расчетном соединении может быть уменьшен до значений, приведенных в приложении 2.

13. Допускается выпуклость и вогнутость углового шва до 30% его катета. При этом вогнутость не должна приводить к уменьшению значения катета (черт.5), установленного при проектировании.

Технология сварки

Поскольку точечная сварка арматуры представляет собой разновидность контактной сварки, то в основу процесса положен небезызвестный закон Джоуля-Ленца, в соответствии с которым происходит тепловое воздействие электрического тока, а также принцип усилия сжатия свариваемых деталей.


Практически ювелирная работа, медными электродами

Более подробно технология выглядит так. В ходе одно- либо многоточечной контактной сварки арматуры ток от одного электрода проходит к другому непосредственно через металл. К слову, сами электроды, применяемые при контактной точечной сварке, производятся из сплавов, обладающих высокой электропроводностью. Это позволяет обеспечить в связи «электрод-деталь» наименьшее сопротивление. В результате в связи «деталь-деталь» — наибольшее нагревание, поскольку там как раз и оказывается максимальное сопротивление.

Читать еще:  Приспособление для вязки арматуры

Точечная сварка арматуры

Она осуществляется в одном из двух режимов: мягком и жестком. Первая технология отличается тем, что:

  • Времени для сварки требуется больше;
  • Заготовки нагреваются плавно;
  • Плотность тока непосредственно на рабочей поверхности электрода не превышает, как правило, 100 А/мм2;
  • Сам ток протекает за 0,5-3 с.

Плюсами, которыми характеризуется эта технология, являются:

  • Меньшее количество потребляемой мощности;
  • Меньшие сетевые нагрузки;
  • Необходимость в аппаратах меньшей мощности и, соответственно, меньшей стоимости;
  • Наконец, необходимо отметить и такое преимущество, как уменьшение закалки сварочной зоны.

Второй режим – жесткий – характеризуется иными особенностями:

  • Продолжительность сварки здесь меньше;
  • Показатели силы тока выше, они достигают 120-300 А/мм2;
  • Ток при жестком режиме протекает за 0,1-1,5 с.

Основным преимуществом, которым обладает подобная технология сварки арматуры, является общее уменьшение времени, затрачиваемого на соединение, и значительное повышение производительности.

Впрочем, отмечаются и некоторые недостатки, в частности: повышенная мощность, которая потребляется при работе, серьезные сетевые нагрузки.

Применение к арматуре

При любом строительстве требуется армирование бетона для получения прочных конструкций. Чтобы обеспечить прочность, необходимо создавать каркасы из арматуры. Для этого проводят соединение арматуры с помощью вязальной проволоки или сварки.

Получение прочного каркаса из отдельных стержней арматуры является сложной задачей. Необходимо соблюдать технологию и множество правил.

Например, сварку арматуры внахлест используют, когда требуется все нагрузки равномерно распределить по поверхности. При этом необходимо учитывать, что нахлест применяется в местах наименьшего напряжения. Желательно брать арматурные стержни одного диаметра, при этом толщина арматуры не должна быть больше 20 мм.

Технология внахлест производится с учетом двух рельефов и швов. Сварочный процесс осуществляется аппаратом ручной электродуговой сварки.

Сварное соединение типа тавр должно иметь инвентарную форму, в ванне применяется только один электрод. Если сварка осуществляется под флюсом, то применять присадочную проволоку не нужно.

Нахлест арматуры в строительстве в случае применения сварки разрешается только при использовании стержней марок А400С и А500С. Арматура этого класса хорошо сваривается.

Недостатком является высокая стоимость этих марок. Наибольшее применение получила арматура марки А400, но она при нагревании теряет свои прочностные свойства и устойчивость к коррозии.

Нормы расхода арматуры на нахлест

Необходимая длина стержней арматуры различается по нескольким критериям:

  1. Для арматуры работающей на сжатие, необходимая длина будет следующей. Так, для арматур диаметра 6 мм — длина 20-22см; 8мм — длина 20-29см; 10мм — длина 25-36см; 12мм — длина 30-43см; 14мм — длина 35-50см.
  2. Для арматур работающих на растяжение, требуемая длина нахлеста стержней должна быть больше. Например, для диаметра 6 мм — длина 20-29см; 8мм — длина 27-38см; 10мм — длина 33-48см; 12мм — длина 40-57см; 14мм — длина 46-67см.

Чем выше класс бетона по прочности, тем меньше должна быть длина стержней для нахлеста. Исключениями являются только арматуры 20, 28 и 32 мм. При классе прочности бетона B35 длина стержней должна составлять 655, 920 и 1050 мм соответственно.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector